direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×C23×C4, C28⋊3C24, C14.2C25, Dic7⋊3C24, C24.81D14, D14.11C24, C7⋊1(C24×C4), C14⋊1(C23×C4), C2.1(D7×C24), (C23×C28)⋊13C2, (C2×C28)⋊16C23, (D7×C24).4C2, (C2×C14).324C24, (C22×C28)⋊64C22, (C23×Dic7)⋊13C2, (C2×Dic7)⋊14C23, C22.52(C23×D7), C23.345(C22×D7), (C22×C14).431C23, (C23×C14).114C22, (C22×Dic7)⋊55C22, (C22×D7).261C23, (C23×D7).123C22, (C2×C14)⋊7(C22×C4), (C22×C14)⋊15(C2×C4), SmallGroup(448,1366)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — D7×C23×C4 |
Generators and relations for D7×C23×C4
G = < a,b,c,d,e,f | a2=b2=c2=d4=e7=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 4740 in 1362 conjugacy classes, 799 normal (11 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C23, C23, D7, C14, C14, C22×C4, C22×C4, C24, C24, Dic7, C28, D14, C2×C14, C23×C4, C23×C4, C25, C4×D7, C2×Dic7, C2×C28, C22×D7, C22×C14, C24×C4, C2×C4×D7, C22×Dic7, C22×C28, C23×D7, C23×C14, D7×C22×C4, C23×Dic7, C23×C28, D7×C24, D7×C23×C4
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C24, D14, C23×C4, C25, C4×D7, C22×D7, C24×C4, C2×C4×D7, C23×D7, D7×C22×C4, D7×C24, D7×C23×C4
(1 125)(2 126)(3 120)(4 121)(5 122)(6 123)(7 124)(8 113)(9 114)(10 115)(11 116)(12 117)(13 118)(14 119)(15 134)(16 135)(17 136)(18 137)(19 138)(20 139)(21 140)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 148)(30 149)(31 150)(32 151)(33 152)(34 153)(35 154)(36 141)(37 142)(38 143)(39 144)(40 145)(41 146)(42 147)(43 162)(44 163)(45 164)(46 165)(47 166)(48 167)(49 168)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 161)(57 176)(58 177)(59 178)(60 179)(61 180)(62 181)(63 182)(64 169)(65 170)(66 171)(67 172)(68 173)(69 174)(70 175)(71 190)(72 191)(73 192)(74 193)(75 194)(76 195)(77 196)(78 183)(79 184)(80 185)(81 186)(82 187)(83 188)(84 189)(85 204)(86 205)(87 206)(88 207)(89 208)(90 209)(91 210)(92 197)(93 198)(94 199)(95 200)(96 201)(97 202)(98 203)(99 218)(100 219)(101 220)(102 221)(103 222)(104 223)(105 224)(106 211)(107 212)(108 213)(109 214)(110 215)(111 216)(112 217)
(1 97)(2 98)(3 92)(4 93)(5 94)(6 95)(7 96)(8 85)(9 86)(10 87)(11 88)(12 89)(13 90)(14 91)(15 106)(16 107)(17 108)(18 109)(19 110)(20 111)(21 112)(22 99)(23 100)(24 101)(25 102)(26 103)(27 104)(28 105)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 57)(37 58)(38 59)(39 60)(40 61)(41 62)(42 63)(43 78)(44 79)(45 80)(46 81)(47 82)(48 83)(49 84)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)(56 77)(113 204)(114 205)(115 206)(116 207)(117 208)(118 209)(119 210)(120 197)(121 198)(122 199)(123 200)(124 201)(125 202)(126 203)(127 218)(128 219)(129 220)(130 221)(131 222)(132 223)(133 224)(134 211)(135 212)(136 213)(137 214)(138 215)(139 216)(140 217)(141 176)(142 177)(143 178)(144 179)(145 180)(146 181)(147 182)(148 169)(149 170)(150 171)(151 172)(152 173)(153 174)(154 175)(155 190)(156 191)(157 192)(158 193)(159 194)(160 195)(161 196)(162 183)(163 184)(164 185)(165 186)(166 187)(167 188)(168 189)
(1 34)(2 35)(3 29)(4 30)(5 31)(6 32)(7 33)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 20 13 27)(2 21 14 28)(3 15 8 22)(4 16 9 23)(5 17 10 24)(6 18 11 25)(7 19 12 26)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)(57 71 64 78)(58 72 65 79)(59 73 66 80)(60 74 67 81)(61 75 68 82)(62 76 69 83)(63 77 70 84)(85 99 92 106)(86 100 93 107)(87 101 94 108)(88 102 95 109)(89 103 96 110)(90 104 97 111)(91 105 98 112)(113 127 120 134)(114 128 121 135)(115 129 122 136)(116 130 123 137)(117 131 124 138)(118 132 125 139)(119 133 126 140)(141 155 148 162)(142 156 149 163)(143 157 150 164)(144 158 151 165)(145 159 152 166)(146 160 153 167)(147 161 154 168)(169 183 176 190)(170 184 177 191)(171 185 178 192)(172 186 179 193)(173 187 180 194)(174 188 181 195)(175 189 182 196)(197 211 204 218)(198 212 205 219)(199 213 206 220)(200 214 207 221)(201 215 208 222)(202 216 209 223)(203 217 210 224)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 117)(2 116)(3 115)(4 114)(5 113)(6 119)(7 118)(8 122)(9 121)(10 120)(11 126)(12 125)(13 124)(14 123)(15 129)(16 128)(17 127)(18 133)(19 132)(20 131)(21 130)(22 136)(23 135)(24 134)(25 140)(26 139)(27 138)(28 137)(29 143)(30 142)(31 141)(32 147)(33 146)(34 145)(35 144)(36 150)(37 149)(38 148)(39 154)(40 153)(41 152)(42 151)(43 157)(44 156)(45 155)(46 161)(47 160)(48 159)(49 158)(50 164)(51 163)(52 162)(53 168)(54 167)(55 166)(56 165)(57 171)(58 170)(59 169)(60 175)(61 174)(62 173)(63 172)(64 178)(65 177)(66 176)(67 182)(68 181)(69 180)(70 179)(71 185)(72 184)(73 183)(74 189)(75 188)(76 187)(77 186)(78 192)(79 191)(80 190)(81 196)(82 195)(83 194)(84 193)(85 199)(86 198)(87 197)(88 203)(89 202)(90 201)(91 200)(92 206)(93 205)(94 204)(95 210)(96 209)(97 208)(98 207)(99 213)(100 212)(101 211)(102 217)(103 216)(104 215)(105 214)(106 220)(107 219)(108 218)(109 224)(110 223)(111 222)(112 221)
G:=sub<Sym(224)| (1,125)(2,126)(3,120)(4,121)(5,122)(6,123)(7,124)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,176)(58,177)(59,178)(60,179)(61,180)(62,181)(63,182)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,190)(72,191)(73,192)(74,193)(75,194)(76,195)(77,196)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,204)(86,205)(87,206)(88,207)(89,208)(90,209)(91,210)(92,197)(93,198)(94,199)(95,200)(96,201)(97,202)(98,203)(99,218)(100,219)(101,220)(102,221)(103,222)(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217), (1,97)(2,98)(3,92)(4,93)(5,94)(6,95)(7,96)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,106)(16,107)(17,108)(18,109)(19,110)(20,111)(21,112)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(113,204)(114,205)(115,206)(116,207)(117,208)(118,209)(119,210)(120,197)(121,198)(122,199)(123,200)(124,201)(125,202)(126,203)(127,218)(128,219)(129,220)(130,221)(131,222)(132,223)(133,224)(134,211)(135,212)(136,213)(137,214)(138,215)(139,216)(140,217)(141,176)(142,177)(143,178)(144,179)(145,180)(146,181)(147,182)(148,169)(149,170)(150,171)(151,172)(152,173)(153,174)(154,175)(155,190)(156,191)(157,192)(158,193)(159,194)(160,195)(161,196)(162,183)(163,184)(164,185)(165,186)(166,187)(167,188)(168,189), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,71,64,78)(58,72,65,79)(59,73,66,80)(60,74,67,81)(61,75,68,82)(62,76,69,83)(63,77,70,84)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112)(113,127,120,134)(114,128,121,135)(115,129,122,136)(116,130,123,137)(117,131,124,138)(118,132,125,139)(119,133,126,140)(141,155,148,162)(142,156,149,163)(143,157,150,164)(144,158,151,165)(145,159,152,166)(146,160,153,167)(147,161,154,168)(169,183,176,190)(170,184,177,191)(171,185,178,192)(172,186,179,193)(173,187,180,194)(174,188,181,195)(175,189,182,196)(197,211,204,218)(198,212,205,219)(199,213,206,220)(200,214,207,221)(201,215,208,222)(202,216,209,223)(203,217,210,224), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,117)(2,116)(3,115)(4,114)(5,113)(6,119)(7,118)(8,122)(9,121)(10,120)(11,126)(12,125)(13,124)(14,123)(15,129)(16,128)(17,127)(18,133)(19,132)(20,131)(21,130)(22,136)(23,135)(24,134)(25,140)(26,139)(27,138)(28,137)(29,143)(30,142)(31,141)(32,147)(33,146)(34,145)(35,144)(36,150)(37,149)(38,148)(39,154)(40,153)(41,152)(42,151)(43,157)(44,156)(45,155)(46,161)(47,160)(48,159)(49,158)(50,164)(51,163)(52,162)(53,168)(54,167)(55,166)(56,165)(57,171)(58,170)(59,169)(60,175)(61,174)(62,173)(63,172)(64,178)(65,177)(66,176)(67,182)(68,181)(69,180)(70,179)(71,185)(72,184)(73,183)(74,189)(75,188)(76,187)(77,186)(78,192)(79,191)(80,190)(81,196)(82,195)(83,194)(84,193)(85,199)(86,198)(87,197)(88,203)(89,202)(90,201)(91,200)(92,206)(93,205)(94,204)(95,210)(96,209)(97,208)(98,207)(99,213)(100,212)(101,211)(102,217)(103,216)(104,215)(105,214)(106,220)(107,219)(108,218)(109,224)(110,223)(111,222)(112,221)>;
G:=Group( (1,125)(2,126)(3,120)(4,121)(5,122)(6,123)(7,124)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,176)(58,177)(59,178)(60,179)(61,180)(62,181)(63,182)(64,169)(65,170)(66,171)(67,172)(68,173)(69,174)(70,175)(71,190)(72,191)(73,192)(74,193)(75,194)(76,195)(77,196)(78,183)(79,184)(80,185)(81,186)(82,187)(83,188)(84,189)(85,204)(86,205)(87,206)(88,207)(89,208)(90,209)(91,210)(92,197)(93,198)(94,199)(95,200)(96,201)(97,202)(98,203)(99,218)(100,219)(101,220)(102,221)(103,222)(104,223)(105,224)(106,211)(107,212)(108,213)(109,214)(110,215)(111,216)(112,217), (1,97)(2,98)(3,92)(4,93)(5,94)(6,95)(7,96)(8,85)(9,86)(10,87)(11,88)(12,89)(13,90)(14,91)(15,106)(16,107)(17,108)(18,109)(19,110)(20,111)(21,112)(22,99)(23,100)(24,101)(25,102)(26,103)(27,104)(28,105)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,57)(37,58)(38,59)(39,60)(40,61)(41,62)(42,63)(43,78)(44,79)(45,80)(46,81)(47,82)(48,83)(49,84)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(113,204)(114,205)(115,206)(116,207)(117,208)(118,209)(119,210)(120,197)(121,198)(122,199)(123,200)(124,201)(125,202)(126,203)(127,218)(128,219)(129,220)(130,221)(131,222)(132,223)(133,224)(134,211)(135,212)(136,213)(137,214)(138,215)(139,216)(140,217)(141,176)(142,177)(143,178)(144,179)(145,180)(146,181)(147,182)(148,169)(149,170)(150,171)(151,172)(152,173)(153,174)(154,175)(155,190)(156,191)(157,192)(158,193)(159,194)(160,195)(161,196)(162,183)(163,184)(164,185)(165,186)(166,187)(167,188)(168,189), (1,34)(2,35)(3,29)(4,30)(5,31)(6,32)(7,33)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,20,13,27)(2,21,14,28)(3,15,8,22)(4,16,9,23)(5,17,10,24)(6,18,11,25)(7,19,12,26)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,71,64,78)(58,72,65,79)(59,73,66,80)(60,74,67,81)(61,75,68,82)(62,76,69,83)(63,77,70,84)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112)(113,127,120,134)(114,128,121,135)(115,129,122,136)(116,130,123,137)(117,131,124,138)(118,132,125,139)(119,133,126,140)(141,155,148,162)(142,156,149,163)(143,157,150,164)(144,158,151,165)(145,159,152,166)(146,160,153,167)(147,161,154,168)(169,183,176,190)(170,184,177,191)(171,185,178,192)(172,186,179,193)(173,187,180,194)(174,188,181,195)(175,189,182,196)(197,211,204,218)(198,212,205,219)(199,213,206,220)(200,214,207,221)(201,215,208,222)(202,216,209,223)(203,217,210,224), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,117)(2,116)(3,115)(4,114)(5,113)(6,119)(7,118)(8,122)(9,121)(10,120)(11,126)(12,125)(13,124)(14,123)(15,129)(16,128)(17,127)(18,133)(19,132)(20,131)(21,130)(22,136)(23,135)(24,134)(25,140)(26,139)(27,138)(28,137)(29,143)(30,142)(31,141)(32,147)(33,146)(34,145)(35,144)(36,150)(37,149)(38,148)(39,154)(40,153)(41,152)(42,151)(43,157)(44,156)(45,155)(46,161)(47,160)(48,159)(49,158)(50,164)(51,163)(52,162)(53,168)(54,167)(55,166)(56,165)(57,171)(58,170)(59,169)(60,175)(61,174)(62,173)(63,172)(64,178)(65,177)(66,176)(67,182)(68,181)(69,180)(70,179)(71,185)(72,184)(73,183)(74,189)(75,188)(76,187)(77,186)(78,192)(79,191)(80,190)(81,196)(82,195)(83,194)(84,193)(85,199)(86,198)(87,197)(88,203)(89,202)(90,201)(91,200)(92,206)(93,205)(94,204)(95,210)(96,209)(97,208)(98,207)(99,213)(100,212)(101,211)(102,217)(103,216)(104,215)(105,214)(106,220)(107,219)(108,218)(109,224)(110,223)(111,222)(112,221) );
G=PermutationGroup([[(1,125),(2,126),(3,120),(4,121),(5,122),(6,123),(7,124),(8,113),(9,114),(10,115),(11,116),(12,117),(13,118),(14,119),(15,134),(16,135),(17,136),(18,137),(19,138),(20,139),(21,140),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,148),(30,149),(31,150),(32,151),(33,152),(34,153),(35,154),(36,141),(37,142),(38,143),(39,144),(40,145),(41,146),(42,147),(43,162),(44,163),(45,164),(46,165),(47,166),(48,167),(49,168),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,161),(57,176),(58,177),(59,178),(60,179),(61,180),(62,181),(63,182),(64,169),(65,170),(66,171),(67,172),(68,173),(69,174),(70,175),(71,190),(72,191),(73,192),(74,193),(75,194),(76,195),(77,196),(78,183),(79,184),(80,185),(81,186),(82,187),(83,188),(84,189),(85,204),(86,205),(87,206),(88,207),(89,208),(90,209),(91,210),(92,197),(93,198),(94,199),(95,200),(96,201),(97,202),(98,203),(99,218),(100,219),(101,220),(102,221),(103,222),(104,223),(105,224),(106,211),(107,212),(108,213),(109,214),(110,215),(111,216),(112,217)], [(1,97),(2,98),(3,92),(4,93),(5,94),(6,95),(7,96),(8,85),(9,86),(10,87),(11,88),(12,89),(13,90),(14,91),(15,106),(16,107),(17,108),(18,109),(19,110),(20,111),(21,112),(22,99),(23,100),(24,101),(25,102),(26,103),(27,104),(28,105),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,57),(37,58),(38,59),(39,60),(40,61),(41,62),(42,63),(43,78),(44,79),(45,80),(46,81),(47,82),(48,83),(49,84),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76),(56,77),(113,204),(114,205),(115,206),(116,207),(117,208),(118,209),(119,210),(120,197),(121,198),(122,199),(123,200),(124,201),(125,202),(126,203),(127,218),(128,219),(129,220),(130,221),(131,222),(132,223),(133,224),(134,211),(135,212),(136,213),(137,214),(138,215),(139,216),(140,217),(141,176),(142,177),(143,178),(144,179),(145,180),(146,181),(147,182),(148,169),(149,170),(150,171),(151,172),(152,173),(153,174),(154,175),(155,190),(156,191),(157,192),(158,193),(159,194),(160,195),(161,196),(162,183),(163,184),(164,185),(165,186),(166,187),(167,188),(168,189)], [(1,34),(2,35),(3,29),(4,30),(5,31),(6,32),(7,33),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,20,13,27),(2,21,14,28),(3,15,8,22),(4,16,9,23),(5,17,10,24),(6,18,11,25),(7,19,12,26),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56),(57,71,64,78),(58,72,65,79),(59,73,66,80),(60,74,67,81),(61,75,68,82),(62,76,69,83),(63,77,70,84),(85,99,92,106),(86,100,93,107),(87,101,94,108),(88,102,95,109),(89,103,96,110),(90,104,97,111),(91,105,98,112),(113,127,120,134),(114,128,121,135),(115,129,122,136),(116,130,123,137),(117,131,124,138),(118,132,125,139),(119,133,126,140),(141,155,148,162),(142,156,149,163),(143,157,150,164),(144,158,151,165),(145,159,152,166),(146,160,153,167),(147,161,154,168),(169,183,176,190),(170,184,177,191),(171,185,178,192),(172,186,179,193),(173,187,180,194),(174,188,181,195),(175,189,182,196),(197,211,204,218),(198,212,205,219),(199,213,206,220),(200,214,207,221),(201,215,208,222),(202,216,209,223),(203,217,210,224)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,117),(2,116),(3,115),(4,114),(5,113),(6,119),(7,118),(8,122),(9,121),(10,120),(11,126),(12,125),(13,124),(14,123),(15,129),(16,128),(17,127),(18,133),(19,132),(20,131),(21,130),(22,136),(23,135),(24,134),(25,140),(26,139),(27,138),(28,137),(29,143),(30,142),(31,141),(32,147),(33,146),(34,145),(35,144),(36,150),(37,149),(38,148),(39,154),(40,153),(41,152),(42,151),(43,157),(44,156),(45,155),(46,161),(47,160),(48,159),(49,158),(50,164),(51,163),(52,162),(53,168),(54,167),(55,166),(56,165),(57,171),(58,170),(59,169),(60,175),(61,174),(62,173),(63,172),(64,178),(65,177),(66,176),(67,182),(68,181),(69,180),(70,179),(71,185),(72,184),(73,183),(74,189),(75,188),(76,187),(77,186),(78,192),(79,191),(80,190),(81,196),(82,195),(83,194),(84,193),(85,199),(86,198),(87,197),(88,203),(89,202),(90,201),(91,200),(92,206),(93,205),(94,204),(95,210),(96,209),(97,208),(98,207),(99,213),(100,212),(101,211),(102,217),(103,216),(104,215),(105,214),(106,220),(107,219),(108,218),(109,224),(110,223),(111,222),(112,221)]])
160 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 4A | ··· | 4P | 4Q | ··· | 4AF | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 7 | ··· | 7 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
160 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | D7 | D14 | D14 | C4×D7 |
kernel | D7×C23×C4 | D7×C22×C4 | C23×Dic7 | C23×C28 | D7×C24 | C23×D7 | C23×C4 | C22×C4 | C24 | C23 |
# reps | 1 | 28 | 1 | 1 | 1 | 32 | 3 | 42 | 3 | 48 |
Matrix representation of D7×C23×C4 ►in GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 17 | 0 |
0 | 0 | 0 | 0 | 17 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 10 | 13 |
0 | 0 | 0 | 28 | 22 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 19 | 17 |
0 | 0 | 0 | 1 | 10 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,17,0,0,0,0,0,17],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,10,28,0,0,0,13,22],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,19,1,0,0,0,17,10] >;
D7×C23×C4 in GAP, Magma, Sage, TeX
D_7\times C_2^3\times C_4
% in TeX
G:=Group("D7xC2^3xC4");
// GroupNames label
G:=SmallGroup(448,1366);
// by ID
G=gap.SmallGroup(448,1366);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^4=e^7=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations